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Atomic relaxation in silicon carbide polytypes 

C Cheng, Volker Heine and R J Needs 
TCM Group, Cavendish Laboratory, Madingley Road, Cambridge CB3 OHE, UK 

Received 29 December 1989 

Abstract. The relaxed structures of the (l), (2), (23) and (3) polytypes of silicon carbide are 
calculated using the pseudopotential total-energy technique with norm-conserving pseu- 
dopotentials and the local density approximation to the exchange-correlation energy. A 
‘tensionmodel’isproposed toaccount fortheatomicforcesandstressesof theidealstructures 
and the results of the detailed relaxed structures. We also deduce the force field due to an 
isolated antiphase boundary from the calculated atomic forces of the ideal structures. The 
energies associated with these relaxations are about 1 meV per SIC pair of atoms per 
antiphase boundary. In order to calculate it, we have developed a new formulation, which 
should be of wider use in calculating relaxation energies. We discuss the different effects of 
longitudinal and transverse relaxations on the stability of the polytypes, particularly (23) as 
a possible intermediate phase between (2) and (3). 

1. Introduction 

Silicon carbide (Sic) forms in dozens of polytypes [l], each of which is a different 
periodic stacking sequence of identical S i c  layers. The phenomenon of polytypism in 
S i c  has been studied for many years, and the present work is one of a series of papers 
discussing both static and phonon effects [2-4]. A number of different theories have 
been proposed at various times involving both equilibrium and non-equilibrium effects 
[ 1 , 51. In our previous work [2] we calculated the energies of several S i c  polytypes and 
found that the experimentally observed polytypes are in general lower in energy than 
those that are not observed. These results imply that the observed polytypes are equi- 
librium, phases at the high temperatures of growth with the structures becoming frozen- 
in on cooling. We also calculated in a companion paper [4] (to be referred to as I) the 
phonon contribution to the free energy and found that it stabilised the polytype (23) (in 
Zhdanov notation [6], see below) as an intermediate phase between the structures (2) 
and (3). 

Although the polytypes of S i c  consist of different stackings of the same basic unit, 
small relaxations of the positions of the atoms can occur because of the different 
symmetries of the structures. In this paper we study the detailed structure of four S i c  
polytypes, including the most commonly observed ones, using ab initio total-energy 
calculations and relaxing the atomic positions and lattice parameters to minimise the 
energy. These relaxations were neglected in the previous calculations in [2]. The purpose 
is twofold. (i) The pattern of the relaxations in bond lengths and bond angles is at 
first sight rather surprising and of interest in its own right. We find that from all our 
calculations that the percentage deviations of the bond angles from the ideal tetrahedral 
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value are smaller than the percentage differences in bond lengths. This is the opposite 
of what one finds in, say, amorphous silicon, and runs counter to the fact that force 
constants for bond bending are weaker than for bond stretching. The detailed results 
and discussions are presented in section 4. (ii) The most important point is that the 
relaxation energies can contribute to stabilising polytype structures. We shall discuss 
this generally and include results for the polytype (23) specifically. We refer to paper I 
for a wider discussion of polytype stability, temperature effects, etc., into which the 
results of the present work are to be inserted. The short answer is that the relaxation 
contributions to polytype stability/instability (there are effects of both signs) seem to be 
smaller than the effect of the phonon free energy. 

Let us outline the conceptual framework for the present investigation. The structures 
of S i c  polytypes consist of different stackings of layers in what would be the (1 11) 
direction of the cubic zincblende structure. Each layer can be placed on top of the one 
below in two different orientations. The two possibilities are denoted by an up spin ‘+’ 
and a down spin ‘-’. In the Zhdanov notation [6] the structure is written in terms of the 
widths of bands of parallel spins. For instance, the cubic structure is ( x ) ,  wurtzite is (1) 
and the three most commonly observed polytypes in order of prevalence, 6H, 4H and 
15R, are written as (3), (2) and (23), respectively. We shall use the Zhadanov notation 
throughout the rest of this paper. 

In our calculations, we start with the ‘ideal’ structures of (l), (2), (3) and (23) in which 
all bond angles have the perfect tetrahedral value and all bond lengths are equal to one 
another and equal to that in the cubic phase (w). We do total-energy calculations with 
norm-conserving pseudopotentials in density-functional theory with the local density 
approximation for exchange and correlation as reported previously [2]. From the self- 
consistent wavefunctions we now evaluate the stresses azz and U,, = a,,, as well as the 
Hellmann-Feynman forces fi on the atoms (which are all in the z direction, i.e. the 
stacking direction). We then relax the atomic positions and lattice constants a and c such 
that the forces and stresses are zero: to be precise, we relax the stresses to equal that of 
the cubic structure, which was isotropic but not exactly zero (section 2). In this way 
the relaxation energies are obtained. The relaxation energy is defined as the energy 
difference between a polytype in the ideal structure at the volume that is the volume of 
the cubic phase at zero stress and the relaxed polytype at zero stress (section 2). In order 
to understand the relaxations, it is in some ways easier to discuss the forces and stresses 
in the ideal structures than the relaxations themselves, because in the ideal structures 
one does not have the complicated interplay between the relaxation of one plane and 
another, nor between atomic relaxation and change of lattice constants. Decomposing 
forces into the ion-ion and electron-ion contributions for Si and C atoms allows us to 
build up a clear picture of what is the effect of a boundary on an atom and how far the 
effect extends (section 3). In order to clarify the picture even further, a very simple 
‘tension model’ is proposed. In this model, the interatomic bonds are represented by 
springs whose tensions give the forces and stresses of the ideal structure and hence relate 
these to each other. The bond angle forces are not included. The tensions interpret some 
of the results of the relaxed structures. The computed longitudinal relaxations of the 
spacings between atomic layers are qualitatively consistent with the tensions suggested 
by the model. 

The second aim (ii) of this paper is to investigate whether relaxations could stabilise 
long-period polytypes such as are observed for Sic .  Previous pseudopotential total- 
energy calculations [2] of ideal structures have shown that the energies of (2) and ( 3 )  are 
nearly identical. Phonon calculations in paper I showed (2) has lower free energy than 
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(3) at low temperature, but (3) becomes stable above T = To where these two have the 
same free energy. The question is whether the simplest intermediate phase (23) is a 
stable phase. To a good approximation the polytype (23) is just an alternation of 2-bands 
and 3-bands taken from the simple polytypes (2) and (3), so that we write for the energy 
(per S i c  pair of atoms) 

E(23) = [(2/5)E(2, + (3/5)Ew1 + A (1.1) 
where A is a correction to the simple approximation in square brackets. Clearly a 
negative value of A would stabilise (23) as an intermediate phase between (2) and (3) in 
a phase diagram. The calculations in paper I show that the phonon contribution to A is 
negative. We shall study the relaxation contribution A, to A in the present paper. Note 
that we are calculating only the energies at temperature T = 0, the relaxation energies 
being separate from and in addition to the phonon free energies of I. 

A slightly different view is to treat an arbitrary polytype as bands of cubic stacking 
separated by antiphase boundaries (hereafter ‘boundaries’ for short). The energy is then 
written as 

E = E,,, + /3x + c,Z, 
where /3 is the chemical potential for introducing a boundary into the cubic material of 
energy E,,, and x is the concentration of boundaries per S ic  double atomic layer, i.e. 
the inverse mean band width. The Z, are boundary-boundary interactions (BBI) with 
coefficients c, depending on the polytype. For instance, we have 

= E(,, + (1/2)/3 + (1/2)Z2 + (1/2)Z4 + . . . , (1.3) 
In general, it is necessary to distinguish between nearest-neighbour (NN), next nearest- 
neighbour (NNN), etc., BBI as discussed in I. However, the analysis of forces (section 3) 
shows that for the relaxation energy ZEN = I:”. It is easy to see that A in (1.1) can be 
expressed to leading terms as 

A - (1/5)(Zy” + IN” 6 - 2ZN” 5 1. (1.4) 
The stabilisation of phase (23) therefore requires at least next nearest-neighbour BBI. 

The relaxation energy of a polytype can be interpreted in terms of a BBI due to the 
overlap of the force fields of neighbouring boundaries. If we consider an isolated 
boundary in the cubic structure, it will produce locally a pattern of forcesf, and stresses 
falling off with distance in some way. When there are two boundaries, their force fields 
will overlap and produce a BBI when the structure is relaxed. The sign and order of 
magnitude of the BBI is discussed in section 3. Comparison and analysis of the calculated 
forces for (2), (3) and (23) show that the force fields clearly overlap sufficiently to give 
nearest-neighbour BBI but extend only a tiny bit to the next nearest-neighbour boundary. 
The contribution to A is thus, in accordance with (1.4), quite small. We are at the very 
limit of what can be calculated but the A, from relaxations appears to be somewhat 
smaller than the phonon free-energy contribution in paper I. The relaxation of the lattice 
parameters calls for special comment. Part of the total relaxation energy arises from the 
transverse relaxation of the a lattice parameter. Pictorially, we can say that the 2-bands 
as seen in the pure phase (2) ‘want’ to have a certain a lattice parameter and the 3-bands 
‘want’ to have a slightly larger one, as shown by the phase (3). In the polytype (23) or 
higher polytypes, the 2-bands and 3-bands therefore have to expand and shrink laterally 
a little in order to fit together. This effect always leads to an attractive BBI,  as has been 
discussed for other materials [7], i.e. it makes polytypes unstable with respect to the 
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constituent phases (2) and (3). However, we estimate its contribution to A to be about 
1.5 X eV per S i c  pair, smaller than the phonon free energies in paper I. Although 
it is part of the total relaxation energy, we can split it off, because it is manifested purely 
in the transverse stress oxx = ayv of the ideal structure, is of a long-range nature that we 
can think of in terms of macroscopic continuum theory, is of constant sign and would 
give zero forces fi in the ideal structure if present alone. It is discussed in section 5. 
The situation is rather different regarding the longitudinal relaxation of the c lattice 
parameter. Again we can envisage stacking 2-bands and 3-bands, each with its own 
thickness as in pure (2) and (3) differing slightly from one another. But the c lattice 
parameter does not involve any constraint or matching of the two types of band: we 
expect the total thickness in the z direction to be additive, without any long-range effect 
analogous to that of the transverse relaxation above. Of course, there will in general be 
a local expansion (or contraction) of the atomic layer spacings in the z direction around 
the boundaries in order to relax the average a,, stress. But this is part of the local effect 
around each boundary. Certainly the two are inherently combined in our tension model. 
We discuss this in detail in section 5 because it had earlier been suggested by Bruinsma 
and Zangwill [SI from an appealingly simple but rather general model that longitudinal 
relaxation would more or less automatically always stabilise an infinite sequence of 
polytypes. Such a conclusion would clearly be of great interest and relevance, but it 
seems to us that their model is not really appropriate to describe the physics, a point 
they now acknowledge [9]. 

Finally we include in this paper (section 6) a short item needed for completeness in 
our wider treatment of S i c  polytypes, although not directly related to relaxations. Are 
there effects in the electronic structure of the ideal structures that contribute to I,? 
The previous total-energy calculations showed significant values of ZI and Z,. Those 
calculations were analysed in terms of interplanar interactions J,, etc., and the BBI I ,  is 
expressible in terms of the J,, etc., with II = m + 1, m + 2, . . . , as discussed in paper I. 
Unfortunately J3 and therefore Z, were as far as the explicit calculations could go, but in 
section 6 we make estimates for larger separations. The conclusion is that we think they 
are even smaller than the rather smaller free-energy contributions calculated in paper 
I. The connection with the present work is as follows. If we introduce an isolated 
boundary into what is otherwise cubic material, the boundary causes a local perturbation 
of the electronic structure. One manifestation is the force field fi mentioned above, 
another is the contribution J ,  to reversing the orientation of a layer that is n layers away. 
A similar effect is the force field due to displacing a simple atom as in the analysis of the 
phonon spectrum in I. All are the result of a local perturbation of the electronic structure 
and hence all may be expected to have a similar range. Thus we can make an order-of- 
magnitude estimate of the more distant J ,  from what is known of thef, (section 3) and 
of the phonon force constants [4]. 

2. Calculating the atomic relaxations 

The relaxed atomic coordinates and the associated relaxation energies of the different 
polytypes were calculated by minimising the total energy of the system with respect to 
both changes in the size and shape of the unit cell as well as changes in the atomic positions 
within the unit cell. For the energy calculations we used the same pseudopotential total- 
energy techniques as in our earlier work on S i c  polytypes [2]. For a review of this 
calculational method and applications of it, we refer the reader to the recent review 
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article by Ihm [lo]. In order to calculate atomic relaxations, it is advantageous to 
calculate not only the energy as a function of the atomic positions but also the forces on 
the atoms and the stress on the unit cell. Knowledge of the forces and stress make it 
much easier to locate the energy minimum because they give the direction of change in 
parameter space that lowers the total energy. In our work the forces are calculated 
from the Hellmann-Feynman theorem [11] and the stress tensor is obtained using a 
generalisation of the virial theorem [12]. 

In our calculations we have used the pseudopotentials calculated by Bachelet et a1 
[13], who used the method of generation due to Hamann et a1 [14]. Previous calculations 
[15] using these pseudopotentials gave the lattice constant of the zincblende (m)  phase 
of S i c  to within 1% of the experimental value. Usually the lattice constants calculated 
using the local density approximation are a little smaller than the experimental values. 
Such calculations are performed by calculating the total energy as a function of volume 
and locating the volume at which the energy is a minimum. As the volume is increased, 
the number of waves in the basis set is increased so as to keep the basis set energy cut- 
off fixed. The results of many calculations have shown that this procedure results in 
accurate values of the equilibrium volume, so that the error due to the basis set truncation 
is small. On the other hand, calculations of the stress tensor using the generalised virial 
theorem correspond to taking the derivative of the total energy with a fixed number of 
plane waves in the basis set. Because of this our calculated stresses are not close to zero; 
in fact for the (m) phase at the experimental lattice constant we obtain a pressure of 
about - 142 kbar, where the negative sign indicates that an expansive pressure must be 
exerted to keep the structure at this lattice constant. Our method was to relax the 
structures of the other polytypes until there were no forces on the atoms and the stress 
tensor was identical to that calculated for the ( x )  phase. This was done by moving the 
atoms and changing the size and shape of the unit cell in the directions indicated by the 
calculated forces and stresses. 

We have used a basis set containing all plane waves with kinetic energy less than a 
cut-off value of 32 Ryd. Integrations over the Brillouinzone were performed by a special 
points technique using the scheme of Monkhorst and Pack [16]. For the (I), (m),  (2) and 
(3) polytypes we used a hexagonal unit cell and exactly equivalent sets of special points 
corresponding to sampling 12 k-points in the irreducible wedge of the Brillouin zone of 
the (3) structure. For the calculations on the polytype (23) we used a rhombohedral unit 
cell and a special points set consisting of 57 points within the irreducible wedge. When 
comparing total energies it is important to use exactly equivalent Brillouin zone inte- 
grations, as explained in [2]. Thus we are able to compare directly the energies of the 
(l) ,  (m) ,  (2) and (3) polytypes with one another but not with the (23) polytype. However, 
we are able to calculate the relaxation energy of the (23) polytype because this is the 
energy difference between the ideal and relaxed structures that are both calculated in 
the rhombohedral unit cell. Note the rather large number of k-points sampled and the 
way they are chosen to be exactly equivalent for all except the (23)structure. We estimate 
that the error in the energy differences between structures due to the finite sampling 
used for the Brillouin zone integrations is less than 0.001 eV per unit cell. 

For calculating the energy difference of two slightly different structures it is important 
to minimise the error due to the use of a truncated basis set [17]. As we have already 
mentioned, this is best done by keeping the basis set energy cut-off fixed when changing 
the volume of the system by large amounts. However, when considering very small 
strains of the unit cell, as in relaxing the polytype structures, it is much better to keep 
the number of plane waves in the basis set constant. This procedure eliminates jumps in 



5120 C Cheng et a1 

Table 1. Calculated stresses of the polytypes before and after relaxation (in units of loy dyn 
cm-’). The small difference between the longitudinal and transverse stresses of the cubic (a) 
structure are due to the lack of cubic symmetry of the k-points used. We used a hexagonal 
unit cell for the (m) structure such that exactly the same k-points could be used for all the 
structures (except (23)). 

Ideal structure 
0 x 1  -142.455 -152.689 -148.507 -147.530 -146.408 
0 * z  -142.462 -118.694 -131.694 -133.876 -135.292 

Relaxed structure 
uu -142.568 -142.639 -142.515 -142.679 
0 * z  -142.611 -142.539 -142.537 -142.416 

the total energy, which would result from the changes in the size of the basis set if the 
plane-wave cut-off energy were kept fixed. 

Let us first define the relaxation energy E, that we want. We start with the cubic (m) 
structure at its equilibrium volume Vc,,, at pressure P = 0, where suffix c denotes the 
cubic phase and m denotes the condition of minimum energy U .  We construct the ‘ideal’ 
polytype (suffix i) with ideal tetrahedral angles and bond lengths equal to that of the 
cubic structure, i.e. Vi = VC,,,. It will not be at zero pressure but will relax in volume, 
c / a  ratio and internal coordinates to give the relaxed polytype (suffix r) at its equilibrium 
volume Vr,,, at P = 0. The relaxation energy is defined as 

There are three problems about calculating the relaxation energy (2.1). The first is 
that it is so small, of order 1 meV per S i c  pair of atoms, and the difference Ar (1.4) that 
we want is measured in peV per S ic  pair. Secondly, in our calculations we choose to 
work at some non-zero pressure Po at which our computed cubic phase has the volume 
Vo (which was chosen as the experimental equilibrium volume of the cubic phase at P = 
0, but that is immaterial here). However, the energies of the relaxed structures that have 
different volumes and are under finite pressure should not be compared with each other, 
and we have to apply a correction accordingly. In effect we want an enthalpy difference 
rather than the energy difference. Thirdly, we do not know what Po is, corresponding 
to our chosen cubic Vo, because the absolute pressure is a slowly convergent quantity. 
With a cut-off of 32 Ryd, we have a pressure of -142 kbar (table l), but we estimate 
that the converged value may be about half of this. However, we trust that differences 
in the calculated stresses are significant between the various polytypes, for which one 
can see evidence in the systematic trends of table 1. We would point out that the accuracy 
of energy differences in total-energy calculations is usually considered to be of order 
1 meV: even to talk in terms of peV is pushing the calculation well beyond what is 
normal. Thus the three problems above are more significant in our case than they would 
usually be. 

We have considered various ways of dealing with these three problems, and believe 
the following is the most ‘robust’ in the sense of being least sensitive to noise and 
convergence error. For a simple spring, the energy, from equilibrium, can be written as 
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(1/2)Fx, where Fis the final force F = Ax when the extension isx. Consider now a system 
acted on by forces Fi producing displacements xi where Fi = Z A i ~ j .  The total energy is 

E = (1/2) Fix,  
i 

as can be seen by ‘turning on’ all the forces uniformly and simultaneously: there is no 
assumption about A,, being diagonal, only elastic linearity. The necessary and sufficient 
condition is that F, be given by 

F ,  = (dE/dx,) with all other x, = constant. (2.3) 

In our case, let us start from the relaxed structure at equilibrium and apply forces and 
stresses to bring it to the ideal structure (with cubic bond lengths and bond angles). The 
energy is then given by (2.2), and the relaxation energy in the sense of (2.1) is the 
negative of it, i.e. 

E ,  = -(1/2) 2 F J , .  (2.4) 

It remains to define the F, and x, more precisely. There are three contributions 

E ,  = E :  + E :  + E :  (2.5) 

where superscripts i, a and c refer respectively to the internal coordinates within the unit 
cell and to the relaxation of the a and clattice parameters. For the ‘external’ displacement 
x, we have x, = Sc,  the change in the c lattice parameter. The corresponding F, is the 
stress a,, in the ideal structure multiplied by the area of the ‘top’ of the unit cell. With 
slight rearrangement we have 

E = - (1/2) VCT,, SC/C (2 * 6) 

where Vis the volume of the unit cell. For the other ‘external’ displacement x ,  = Sa we 
have to combine the (equal) stress a,, and a,, to obtain 

E: = -(1/2)Va,,Sa/a. (2.7) 
The internal forces F, with i = 1 ton  are the Hellmann-Feynman forcesf, on the n atomic 
layers in the unit cell. By symmetry, they are all in the z direction. Let z ,  be the position 
coordinate of the ith layer in the usual crystallographic sense, i.e. in units of the 
cell height c, measured from some chosen origin. Then the ‘internal’ displacement 
coordinate x, is cSZ,. Note that, in order to satisfy (2.3), it is not S(cz,). Thus we have 

E: = -(1/2) X ~ , C S Z , .  (2.8) 

This formula is invariant, as it should be, under a shift in the origin from which the z ,  are 
measured because the Hellmann-Feynman forces sum to zero. Note (2.6) to (2.8) are 
given per unit cell, not per S i c  pair of atoms. In our case the stresses a,, and ayu are to 
be interpreted as the differences from Po, or to be precise from the reference stresses of 
the cubic structure in table 1. Thus (2.6) to (2.8) constitute our method for calculating 
the relaxation energy. We like it for two reasons. First, it is expressed in terms of 
quantities a,,, SC,~,, Sz,, etc., that are linear in the relaxation, whereas the total energy 
being very large but quadratic in the relaxation is in our experience more susceptible to 
numerical error. Secondly, in our method cancelling out the pressure Po is effected in 
an analytic way when defining the a,,, etc., to be inserted in (2.6) and (2.7), whereas it 
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Table 2. The ion-ion contribution, electron-ion contribution, total atomic forces and the 
modulus of the sum of the forces on  the Si or C atoms for ideal polytypes (in units of lo-; 
dyn). Thef, are defined in figures 1 to 4. 

(Uf l  
f2 

(2) f I 
f 2  
f 3  
f 4  

(3) f i 
f 2  
f 3  
f 4  
f 5  
f 6  

(23) fl 
f 2  

f 3  

f 4  

f 5  

f7 

f 9  
fin 

f 6  

fR 

0.1543 
-0.1543 

- 0.0004 
-0.1543 

0.1543 
0.0004 

0.0000 
-0.1562 
-0.0023 

0.0023 
0.1562 
0.0000 

-0.0004 
-0.1543 

0.1543 
0.0004 
0.0000 

-0.1562 
-0.0023 

0.0023 
0.1562 
0.0000 

-0.1769 
0.1769 

-0.0096 
0.1502 

0.0287 
-0.1693 

-0.0076 
0.1512 

-0.0064 
0.0034 

0.0250 
-0.1656 

-0.0075 
0.1479 

0.0268 

0.1530 

0.0049 

0.0261 

-0.1672 

-0.0089 

-0.0081 

-0.1670 

-0.0226 0.0226 
0.0226 

-0.0100 0.0250 
-0.0041 
-0.0150 

0.0291 

-0.0076 0.0257 
-0.0050 
-0.0087 

0.0057 

0.0250 
-0.0094 

-0.0079 0.02545 
-0.0064 
-0.0129 

0.0272 
-0.0089 
-0.0032 
-0.0104 

0.0072 

0.0261 
-0.0108 

Figure 1. The unit cells of ( a )  the ideal 
and ( b )  the relaxed (1) structures. The full 
circles indicate Si atoms while the open 
circles indicate C atoms. In ( a )  the angles 
A,,  interlayer spacings I ,  (between single 

A1 t f , = - O .  2 2 6  atomic layers) and Hellmann-Feynman 
forcesf, are defined, and the values off, in 
the ideal structure in lO-;dyn given. In ( b )  
the percentage changes due to the relax- 12 = O  0226 

ation in the intervals I ,  are given, and the 
residual J when the calculation was 

f p  =o 0000 

$1 @loo 
t a L  e- -0  1 3 % 4  

l a 1  i b l  stopped. 

is a large numerical correction when one works with the total energy as given by the 
electronic structure. 

3. Atomic forces and stresses in the ideal structures 

In this section we shall, first, analyse the calculated atomic forces of the four polytypes, 
i.e. (l), (2), (3) and (23), in their ideal structures to derive the force field produced by an 
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a 
1003 

( a )  ( 6 1  

Figure 2. The unit cells of the ideal and relaxed ( 2 )  structures. See caption of figure 1 for 
explanation. 

isolated boundary. Secondly, we connect the calculated forces and stresses by our 
simplified tension model. 

The atomic forces and the residual stresses (taking the isotropic stress of (x) as the 
reference) in the ideal structures may be regarded as due to the presence of boundaries. 
The forces on the atoms in the cubic ( x )  phase are zero by symmetry. For other polytypes, 
the forces on the atoms may be non-zero only along the stacking direction ( z  axis). The 
(=) structure has only a single parameter that is not determined by symmetry, the lattice 
constant, and consequently the stress tensor must be a multiple of the identity matrix. 
All other polytypes have two independent components of the stress tensor, ozz in the 
stacking direction and ox, = ayv in the plane of the layers. The values of the stress 
components and the forces are listed in tables 1 and 2 and figures 1 to 4. The residual 
stresses are larger, as expected, for structures with a smaller value of the mean band 
width, i.e. a larger concentration of boundaries. However, the pattern of the forces is 
puzzling and not easy to understand at first sight. For example, the forces in (1) are not 
as strong asf4 in (2) 0rf6 in (3), and why are the strongest forcesf, in ( 2 ) , f 6  in (3) andf4 
andfio in (23)? 

To have a better understanding of the forces, we decompose them into two parts. 
One is the ion-ion contribution, where Si and C are treated as identical ions with charge 
+4 I e I placed in a neutralising background with uniform electron charge density. The 
other is the electron-ion contribution, which depends on the type of atom. These two 
contributions for the structures (l), (2), (3) and (23) are listed in table 2. The atoms that 
experience the strongest forces are not those closest to the centre of the boundary but 
those removed one atom spacing from them, namely C(0) and Si(0) in figure 5. One also 
notices that the ion-ion contributions in (23) are the same as those of (2) and (3), which 
shows that the ion-ion contribution is short-ranged, i.e. extending only to nearest- 
neighbour boundaries. 

Now we deduce the force pattern formed by the presence of an isolated boundary. 
As mentioned in section 1, the force fields of two boundaries will overlap if the two 
boundaries are close enough to each other. We say the effect of boundaries is additive 
if the force fields produced by all boundaries are the same and are simply additive. We 
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Figure 3. The unit cells of the ideal and relaxed,(3) structures. See caption of figure 1 for 
explanation. 

/ 

(a1 I b )  

Figure 4. The unit cells of the ideal and relaxed (23) structures. See caption of figure 1 for 
explanation. 
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Figure 5. Schematic diagram showing the force 
field resulting from an isolated boundary. The full 
circles are Si atoms and the open circles C atoms. 

Figure 6. Schematic picture of one chain of atoms 
in the polytypes with antiphase boundaries (see 
text). In both (a )  and ( b )  atom A is the sixth atom 
removed from the centre of the boundary B ,. 

may expect additivity from linear response theory for the forces on atom A due to 
boundaries B1 and B2 in the case of figure 6(a). However, there is no reason for additivity 
to hold rigorously in the geometry of figure 6 ( b ) ,  where the force on the atom A due to 
the boundary B, may be affected by the intervening boundary B2, which alters the 
position of the atom relative to B1 (cf. figure 6(a)) .  We can test how well additivity holds 
as follows. The sum of thefi in a structure has to be zero, and hence the partial sums 

for silicon and carbon atoms have to be equal and opposite. If the additivity property 
holds, then the partial sums per boundary should be the same in all structures. The 
quantities (3.1) per boundary are listed in table 2. For polytypes (2), (3) and (23) the 
non-additivity is only 3% of the total forces per boundary, while for ( l ) ,  compared 
with the above three, the non-additivity is about 14%. Therefore, having checked the 
additivity, we can evaluate the force field from a single boundary from the calculated 
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Table3.The electron-ioncontribution toatomicforces (in 10-3dyn) for anisolated boundary 
on atoms X(i) where X = Si or C, as defined in figure 5. 

Atom X(0) X( l )  X(-1) X(2) X(-2) X(3) X(-3) X(4) X(-4) 

Si -0.1623 -0.0038 -0.0028 -0.0031 -0.0032 -0.0014 -0.0018 -0.0004 -0.0004 
C 0.1483 0.0209 0.0052 -0.0025 0.0039 0.0007 0.0020 0,0001 0.0005 

forces of ( 2 ) ,  (3)  and (23). We make a least-squares fit to the electron-ion contribution 
to the forces in (2) ,  (3)  and (23) and obtain the force field of an isolated boundary shown 
in table 3 and schematically in figure 5 .  For both the Si and C atoms, the force field 
extends to the fourth-neighbour atom, but only with a tiny value that is of the same order 
of magnitude as or less than the non-additivity. The ion-ion contribution, as mentioned 
above, is short-ranged and can be read off from table 2. It is more or less like a delta 
function on the second atoms from the centre of a boundary (Si(0) and C(0) in figure 5 ) .  
We thus conclude that the range of the force field of a boundary is up to third-neighbour 
atomic double layer with only tiny tails extending beyond that. The electron-ion force 
field on C atoms is more anisotropic than that on Si atoms (figure 5 ) .  The total force on 
an atom is therefore expected to be in the same direction as that of the electron-ion 
contribution except for Si(0) and C(O), where it is determined by the two large values of 
the ion-ion and electron-ion contributions. The force field also explains the strongest 
forcesf, in (2) ,  f6 in ( 3 )  andf, andfio in (23). These strongest forces are formed on the 
atoms where the ion-ion forces are already very small and the electron-ion forces are 
still strong. What is not clear to us is why the decomposed forces in figure 5 are centred 
on atoms C(0) and Si(O), one removed from the centre of the boundary, rather than on 
C(1) and Si(1) directly beside the boundary. 

We now discuss the significance of additivity and non-additivity on the BBI. Obviously 
the additive part of the force field gives a BBI (Im) that does not depend on the presence 
of another boundary and thus we have I:” = IN” . W e expect this relation to hold well, 
as the non-additive part is only a small proportion of the force field. Note that this is very 
different from the BBI of the phonon free energy in paper I, where the leading terms in 
ItN and I:” have opposite signs. 

In the second half of this section we propose a grossly simplified tension model to 
connect both the macroscopic stresses a,, = ayy, a,, and the atomic forcesf, in the ideal 
structures. The atomic bonds of polytypes are modelled as springs with tensions to 
account for both the atomic forces and the stresses. Consider a polytype with n non- 
equivalent bonds per repeating unit under tension T,  with i = 1 to n. These have to be 
fitted to then + 2 quantities, namely the n forcesf, and two stresses a,, and azz. However, 
thef, have to sum to zero, so that only n + 1 forces and stresses are independent. Thus 
the tension model is overdetermined and we therefore include an extra fudge factor a, 
which will also serve to indicate how good the model is. For example, in the structure 
( l ) ,  the three equations to give the tensions T ,  and T 2  (Tl  corresponds to the tension of 
bond b, in figure 1) are 

a z z A z z  = (@/4)(3T1 + T2) (3.2) 

a x x ~ x x  = a ( ~ / 3 > ~ 2  (3.3) 

f l  = T1 - T2 (3.4) 
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Table 4. The evaluated tensions, parameter (Y and relaxation energies (equation (3.5)) of 
the tension model using the atomic forces and stresses of the ideal structures. The tensions 
T, are in units of dyn corresponding to the bonds in the intervals 1, defined in figures 1 
to 4. The relaxation energies are in units of 10-'eV per SIC pair. The corresponding 
percentage (%) changes of the bond lengths estimated from equation (3.6) and the T, are 
given in parentheses. 

E,(3.5) -7.089 
(Y 1.65 

TI 0.0175 (0.55) 
T2 -0.0051 (-0.16) 
T3 
T4 

7-5 
T6 

T, 
TX 
T9 
Tin 

-8.132 -6.235 
1.48 1.47 

0.0162 (0.51) 0.0157 (0.49) 
0.0062 (0.19) 0.0078 (0.24) 
0.0020 (0.06) 0.0014 (0.04) 

0.0157 (0.49) 
0.0068 (0.21) 
0.0036 (0.11) 

0.0004 (0.01) 

-0.0129 (-0.40) -0.0115 (-0.36) 

-0.0068 (-0.21) 

-0.0104 (-0.33) 

-4.984 
1.44 

0.0156 (0.49) 
0.0080 (0.25) 
0.0030 (0.09) 

-0.0057 (-0.18) 

-0.0094 (-0.29) 
0.0000 (0.00) 

where A,, and A ,  are the areas of the unit cell with normal vector perpendicular and 
parallel to the stacking plane and the numerical factors come from the direction cosines. 
The fitted tensions in the atomic bonds for the four polytypes have been determined 
from analogous equations and are listed in table 4. Note that a = 1 corresponds to a 
perfect fit of the model to the calculated forces and stresses. However, the values of a 
for (2), (3) and (23) range from 1.44 to 1.48. For (I), the a i s  1.65. This is due to idealising 
the stress in an atomic bond by a simple spring, and neglecting the bond-bending forces. 
The very different value of a fo r  (1) is the effect of non-additivity when compared to (2), 
(3) and (23). 

We get several things from this simplified model. First, the fact that a is nearly 
constant and of order unity connects the origin of the macroscopic stresses and their 
signs with the internal forces. We have a picture in which the bonds have an internal 
tension, wanting to expand or contract. Where these internal tensions come from will 
be interpreted in the next section. Secondly, we have a rough estimate of the relaxation 
energy per unit cell 

where the sum is over all bonds in a unit cell and A is the force constant of stretching a 
Si-C bond. Equation (3.5) is a simplified form of (2.4) to (2.7). We obtain the value of 
A from the bulk modulus of ( m )  structure [18]. The relaxation energies calculated from 
(3.5) are listed in table 4. Thirdly, equation (3.5) shows immediately the origin of the 
BBI.  Since the equations analogous to (3.2) to (3.4) for the different polytypes are all 
linear, the additivity of forces fi translates into additivity of tensions Ti. However the 
energy (3.5) is quadratic in the Ti so that the total energy is sensitive to the relative sign 
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Table 5.  The percentage differences of the lattice constants, unit cell volume V and internal 
structure parameters of the relaxed structures from the ideal ones. The A, relate to the bond 
angles and b, the bond lengths in the regions I ,  defined in figures 1 to 4. The numbers in 
parentheses are from experiment ([19] for (1) and [20] for (3)). 

Structure 
parameters (1) (2) (23) (3) 

C 
a 
V 

0.319 (0.278) 0.136 
-0.133 (-0.217) -0.075 

0.053 (-0.163) -0.013 

-0.062 0.059 
-0.150 

0.595 0.460 
-0.144 -0.051 

0.138 
-0.121 

0.108 
-0.062 
-0.017 

0.056 

0.072 
-0.150 

-0.053 
-0.114 

0.460 
-0.022 

0.140 
-0.161 

0.400 
-0.011 

0.100 
-0.096 

0.100 
-0.136 

0.090 (0.102) 
-0.050 (-0.068) 
-0.010 (-0.033) 

0.070 
-0.054 
-0.115 

0.404 (0.33) 

0.104 (0.33) 

0.102 (0.17) 

-0.023 (-0.09) 

-0.066 (-0.14) 

-0.086 (-0.09) 

(cancellation or enhancement) of the contributions T,, and TI2 from nearby boundaries 
1 and 2. Fourthly, the changes in bond lengths b, would be 

ab, = T,/A (3.6) 
(also listed in table 4). Comparison of the estimates (3.6) of the changes in bond lengths 
from table 4 with the results of the proper relaxation calculations in table 5 shows 
qualitative agreement. The interpretation is not so good for some diagonal bonds 
because the bond-bending forces are not taken into account. In the structures (2), (3) 
and (23), where the transverse strain (discussed in section 1) is present, the inclusion of 
the bond-bending forces and the constraint of a constant lattice a for every layer in a 
structure is particularly important. This explains why the comparison is best for the (1) 
structure, where there is no transverse strain in the (1) structure of the type discussed in 
section 1. Note that the relaxations are related to the tensions, and not directly to the 
forces f , .  The latter point is obvious from considering the case where neighbouring 
atomic layers happen to have the samef,: presumably both will relax by the same amount 
in the same direction so that there is zero change in the bond length between them. It 
is therefore necessary to use something like our tension model to extract physically 
significant information from the f,. 

4. Results of the relaxation calculations: the relaxed structures 

The results of the relaxation are shown in table 5 and in figures 1 to 4. The (l) ,  (2) and 
(3) polytypes were relaxed until the forces were of the order of lo-' dyn and in each case 
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the components of the stress tensor were different from those of the (m) structure by less 
than 0.15% (table 1). The (23) polytype was not as fully relaxed as the other three 
polytypes. 

The deviations in the average separation 1, between layers in the z direction, c ,  
and the spacing a within the layers from the ideal values increase monotonically with 
increasing concentration of boundaries in the polytype, especially for structures (2), (3) 
and (23). Note that the spacings li relate to actual atomic layers of Si or C ,  whereas the 
word ‘layer’ elsewhere refers to a S i c  double atomic layer. The greater the concentration 
of boundaries, the larger the value of c and the smaller the value of a. This is the same 
trend as shown by the stresses of the ideal structures (table 1). However, the changes in 
volume are more irregular. Our calculated volume change for the (1) polytype is opposite 
in sign to the reported experimental result [19]. Experimentally the volume of the (1) 
polytype is 0.16% smaller than that of the (m) polytype, while our calculations give a 
volume 0.053% larger than the (a) polytype. One possible explanation of this dis- 
agreement is that the specimens may have been far from perfect because the (1) polytype 
is almost certainly not thermodynamically stable and is formed under rather special 
growth conditions. Besides, the volume of a structure can easily be affected by the 
presence of impurities. We therefore suggest that it would be interesting if the measure- 
ments could be repeated on samples with greater chemical and structural perfection or 
with the same impurities in (1) and (m). Another possible origin of the discrepancy is the 
use of the incomplete basis set or the local density approximation in our calculations. 
However, from general experience with such calculations, we do not think these are 
significant effects. We also note that the structure (23) has a smaller relaxed volume than 
those of (2) and (3). This is because the stress a,, and the 6a  of (23) (with x = 2/5 in the 
sense of equation (1.2)) do not interpolate linearly between those of (2) and (3) with 
x = 1/2 and 1/3, respectively. This is probably an artifact because we had to use a 
rhombohedral unit cell and corresponding set of k-points for (23) that are different from 
those for the other polytypes. 

The most interesting aspect of the relaxations is that the percentage changes in bond 
angles are small compared with those in the bond lengths (table 5). This was also 
observed by Gomes de Mesquita [20], who determined the detailedstructure of (3) using 
x-ray diffraction. The measured relaxations are included in table 5 and seen to be in 
reasonable qualitative agreement with our calculated ones. It must be remembered that 
we are dealing with effects at the very limit of accuracy of this type of calculation. The 
bond-angle changes calculated from the measured changes in interlayer spacing are all 
less than 0.12%. Note that the sign of our calculated volume relaxation agrees with the 
observed sign in this case. The agreement between calculation and experiment for (3) 
validates the general trends in our calculations, which in turn suggests that the smallness 
of the bond-angle relaxations is a general feature of the S ic  polytypes as found in all our 
calculations. The smallness of the bond-angle change is particularly noticeable in the (1) 
structure, where the bond-length change and the density of boundaries is largest. The 
phenomenon is at first sight surprising because bond-bending force constants are weaker 
than bond-stretching ones, leading in amorphous Si, for example, to a wider distribution 
of bond angles than of bond lengths. We offer the following explanation. The analogy 
with amorphous Si is beside the point: there and elsewhere the small bond-bendingforce 
constant leads to larger bond-angle changes in response to external forces or constraints. 
Here we are dealing with internal differences in electronic structure between the bonds 
due to differences in the geometrical environment. One has different amounts of sp 
hybridisation and different degrees of bonding. Although one might picture the diamond 
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Table 6. The three contributions (2.6) to (2.8) to the relaxation energy E,(2.4), and cor- 
responding contributions to Ar(5.1), all in eV per SIC pair of atoms. The last line gives 
the same E, per boundary (p.b.) .  

E: -491 - 95 - 60 - 42 3 

E: -367 -307 -229 -181 2 
ES2.5) 

E", - 173 - 57 - 40 -24 -3 

-1031 -459 -329 -247 2 
- E,(p.b.) -1031 -917 -823 -740 

Table 7. The calculated energies of ideal [2] and relaxed structures, and the relaxation 
energies of the polytypes defined in other ways, in eV per SIC pair. 

(1) (2) (23) (3) 

Ideal -263.07538 - 263.08486 -263.08456 -263.08526 

Er(4.1) -0.000054 -0.000662 -0.00061 1 -0.000385 
Relaxed -263.07539 -263.08554 - 263.08519 -263.08566 

H44.3) -0.00098 -0.00044 - 0.00032 -0.00022 

structure as consisting of purely bonding orbitals between perfect sp3 hybridised directed 
valence orbitals, the reality that emerges from a tight-binding analysis of the electronic 
band structure is rather different [21]. In particular, the configuration sxp4-x for silicon 
has x = 1.3. Paxton [22] has made calculations for silicon in the structure (1) and found 
a higher total bond order for the diagonal bonds than for those parallel to the c axis. The 
former will therefore 'want' to be shorter than the latter, in agreement with relaxation 
calculations on (1) S i c  (table 5 and figure 1). In the (I) structure, the two types of bond 
can have different lengths while still retaining the perfect tetrahedral bond angles. That 
presumably still optimises satisfying the exclusion principle, as can be seen in molecules 
like CH3Cl where the bond angles are still near perfect while the bonds to H and C1 are 
quite different. We suggest this as the explanation for the small bond-angle changes in 
(1) Sic .  In the other polytypes it is geometrically not possible to retain perfect tetrahedral 
bond angles while having differences in bond lengths because the a lattice constant of 
all the atomic layers is constrained to be the same. Thus larger relaxations of bond angles 
are found in the polytypes (2), (23) and (23) (table 5 )  as a result of bond-length changes. 

We turn now to the relaxation energy E, (2.4) to (2.8), the various contributions and 
the total being given in table 6. The last line of the table gives the relaxation energy per 
boundary (p.b.). It is very nearly constant: the deviation of E,( p.b.) from a constant is 
due to the BBI with nearest-neighbour boundaries, which is clearly significant. 

We have tried other ways of formulating E,  as mentioned in section 2. If we assume 
that the bulk modulus B is the same for the relaxed (B,)  and ideal (Bi) polytypes and the 
cubic phase ( B J ,  then we can correct for the pressure Po to derive the result 

E ,  = U , ( P =  Po) - Ui(V0) - P,[Po - Pi(Vo)]/B (4.1) 
where Pi( V,) is the calculated stress for the ideal polytype structures at volume Vo. The 
values are given in table 7 using the bulk modulus from experiment [ 181. They are clearly 
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disastrous, the structure (1) with the greatest number of boundaries having by far the 
smallest relaxation energy. However, if the bulk moduli are not equal, there is a further 
correction 

(Po/Bc)Po[l- (1/2)(Bi/Bc) - (1/’2)(Bc/Br)I* ( 4 4  
We find that a 0.2% difference between the three By can give a correction of similar 
magnitude to the original correction term in (4.1). Therefore, the additional term (4.2) 
cannot be ruled out. Furthermore, there is some evidence in our calculations that the 
convergence error in the pressure is not the same for all the structures, another of our 
assumptions. 

A better approach to the relaxation energy is the relaxation enthalpy at pressure Po,  

Hr = [ur(Po> - u,(v0>1 + Po(Vr - Vol. (4.3) 
This is the correct definition of the relaxation ‘energy’ under two conditions. (i) The 
process of relaxation is carried out in an environment of constant pressure P = Po instead 
of P = 0 (cf. equation (2.1)). The quantity (4.3) is necessarily negative, is quadratic in 
the sense that linear terms due to change of volume are subtracted out by the last term 
of (4.3), and there is no attempted extrapolation from PO to P = 0. (ii) The energy is 
governed by calculations with a constant number of plane waves in the basis set. Note 
that our formula for evaluating the stress is analytically the differential of the energy 
with a fixed number of plane waves. Thus there is analytic consistency in the cancellation 
of first-order contributions between the two terms of (4.3). The H, is equivalent to (2.5) 
to (2.8) if we use for a,, and a,, in (2.6) and (2.7) the deviation of the stresses from Po, 
as we have done in table 6. The Hr calculated from (4.3) are given in table 7 and agree 
with the results of table 6 apart from differences in the last significant figure of table 7 .  
This is gratifying, but clearly the formulation (2.4) is superior because it is analytically 
quadratic in the relaxation whereas in (4.3) there is a numerical cancellation between 
substantial linear terms. 

5. The stability of (23) polytype due to relaxations 

The most important part of the present work is to calculate the role of structural 
relaxation for the stability or instability of the polytype (23) as an intermediate phase 
between (2) and (3) in the sense of paper I. We define the relaxation contribution A, to 
A in accordance with (1.1) by 

A I  = Er(23) - (2/5)-h) - (3/5)Er(,) ( 5  * 1) 
where all energies are expressed per S i c  pair of atoms. Table 6 includes the contributions 
to A, from the three parts (2.6) to (2.8) of E, and the total. It is very small, of order 
2 X eV per S i c  pair. From (5. l), it is determined by the deviation of E, from linear 
dependence on the concentration of boundaries in (2), (23) and (3). This is very small 
because indeed the structure (23) is very close to being a sandwich of a 2-band from (2) 
and 3-band from (3), as we have already seen in all the trends of tables 1 , 2 , 4  and 5 and 
figures 2 to 4. An alternative view is to note from (1.4) that A, is related to the BBI to the 
second-neighbour boundaries, and from the discussion of table 3 and figure 5 the 
stress field generated by a boundary is small at those distances. Even then, there are 
cancellations in 1,: since thefi from a boundary must sum to zero, there are cancelling 
positive and negative overlap terms with the neighbouring boundary. On top of that 
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there are further cancellations expected among the three terms in (1.4). It is therefore 
not surprising that Ar is of order 1% of E,. Incidentally we get an even smaller Ar from 
the use of (3.5) and (5.1). It is somewhat surprising that the contribution A; of the Sa 
relaxation is negative (table 6). We would expect it to be positive from the discussion of 
section 1. This is probably due to the (necessary) use of a different k-point sample for 
(23) from that for ( l) ,  (2), (3) and (CO), so that the calculated stress a,, of (23) does not 
interpolate nicely between that of (2) and (3) in the ideal structures. Let us see what it is 
assuming linear interpolation by writing 

6a/a = - (0.15/L) per cent axx = - (12/L) X lo9 dyn cm-* (5.2) 
where L is the number of atomic double layers per boundary, i.e. 2, 5/2 and 3 for our 
polytypes, and where a,, is the deviation from the value for (x) in table 1. The fact that 
(4.1) even fits the calculated a,, and Sa for the structure (1) argues strongly that linearity 
should apply to (23). The calculation of E: from (2.5) and (5.2) converted to energy per 
S ic  pair of atoms and then inserted in (5.1) gives A; = 1.5 X eV per S ic  pair, 
which is positive as it should be in accordance with section 1. This indicates the likely 
uncertainty in our final Ar, which is otherwise difficult to estimate. We hesitate to 
‘correct’ this one contribution to Ar in table 6, fearing to destroy any cancellation of 
errors inherent in the whole of the calculation. The indication is, as already stated, that 
(23) is a better interpolation between (2) and (3) than is evident in our calculation because 
of the difference in k-point sampling. Any greater similarity of (23) to (2) and (3) will 
reduce A; and A:, leaving in the limit only the A: given above. 

We therefore take 

A r  = 2 X eV per S i c  pair (5.3) 
as our final best estimate of A,, with an uncertainty of at least 100%. However, the 
uncertainty would have been an order of magnitude greater without the use of our 
formulation (2.4) to (2.8). The A, (5.3) has to be compared with Aph = - 4 X eV 
per S ic  pair from the phonon free energy at the relevant temperature (around 2400 K) 
as calculated in paper I. The negative sign of Aph would make (23) a stable intermediate 
phase between (2) and (3). All we can really say is that A, is likely to be small enough 
not to wipe out (23) as an intermediate phase, though it probably will reduce the stability 
range considerably from the estimate of 450 K given in I. Bruinsma and Zangwill [8] 
have given a very attractive simple model of the overlap of stress fields around boundaries 
and the longitudinal relaxations. This suggested that longitudinal relaxation would lead 
to a devil’s staircase of an infinite number of stable intermediate phases, i.e. would make 
Ar negative in our case. This would clearly be very important if it were a general effect. 
However, we believe it cannot be so [9,23]. 

6. Electronic contributions to A 

In the last section of this paper, we estimate the intrinsic electronic contribution of ideal 
structures to A ,  i.e. the effect of the J ,  beyond n = 3 in the sense of [2] and [24]. The 
significant values of ZI and Z2 for S i c  is surprising since Z2 already corresponds to 
interactions between layers distanced six bonds apart, i.e. about 7.5 A. As discussed in 
previous papers [2-4,241, particularly Shaw and Heine [24], we interpret this moderately 
long range as due to the remnant of what would be Friedel oscillations in a metal. The 
oscillations are damped in the presence of the energy gap. 
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Sokel and Harrison [25] have discussed this long-ranged interaction by explicitly 
including the band gap E, in second-order perturbation theory. They found that the 
interlayer interaction energy is exponentially damped with the inverse decay length k,  
where 

k ,  = [ 2 ( m ~  + m;)E, /h2] ' '2 .  (6.1) 
The m ;  and m; are the valence band and conduction band effective masses, taken as 
spherically symmetric in the model. From the limited experimental data [26],  we take 
the average energy gap of S i c  as 5 eV and the sum of effective mass as 1.0 me where me 
is the mass of an electron. This gives a decay of interlayer interaction of one-eighteenth 
from the nth-neighbour double layer to the ( n  + 1)th. The values of J 3  (in the notation 
of [ 2 ] )  from previous total-energy calculations [2] is 5 x eV per S ic  pair. Thus the 
estimated value of J5, which is the leading term in A ,  is about 1.6 X eV per S ic  pair. 
This is smaller than the phonon contribution. Another indication of the small electronic 
contribution to A is from the investigation in paper I. The calculations of the interatomic 
force constants in I also suggested that the analogous electronic J,, decay much more 
rapidly beyond J 3  than the phonon J,,, which were examined by calculating the inter- 
atomic displacement-displacement correlations. We thus expect that phonons are the 
dominant effect to stabilise phase (23) and other long-period polytypes. We also cal- 
culated the ion-ion (Ewald) contribution [2] ,  which is part of the intrinsic electronic 
energy, to A and it turns out to be of the order of lo-'" eVper S ic  pair. This is very small 
for the reasons already discussed in connection with the Ewald contribution to J 2  and 

We thus conclude that the electronic contributions of ideal structures to A is smaller 
than the phonon contribution. Together with the results of the relaxation calculations, 
we have shown that at T = 0 K no interactions beyond the nearest-neighbour BBI are 
significant enough to stabilise the phase (23). 
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